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Abstract

Background: Oral candidiasis is a common opportunistic infection in cancer patients, particularly those
undergoing chemotherapy. Multiple clinical and hematological factors contribute to infection risk, but their
complex interactions remain poorly understood using conventional statistical methods. Objectives: To identify
associated factors, and develop machine learning models to predict infection risk of oral candidiasis among
cancer patients receiving and not yet receiving chemotherapy. Materials and Methods: This cross-sectional
study enrolled 69 cancer patients at Hue University of Medicine and Pharmacy Hospital between October 2024
and May 2025. Patients underwent clinical examinations, laboratory testing, direct oral swab microscopy and
cultivation for candidiasis diagnosis. Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was used
to select relevant features. eXtreme Gradient Boosting (XGBoost) models were developed for each patient
group (chemotherapy and non-chemotherapy) and interpreted using SHapley Additive exPlanations (SHAP)
value method. Results: Oral candidiasis was detected in 36.8% of chemotherapy patients and 35.4% of non-
chemotherapy patients. Key associated factors included dry mouth, taste change, white patches on mucosa,
low lymphocyte or red blood cell counts, poor oral hygiene, and antibiotic use. XGBoost models achieved
high performance in both groups (AUC-ROC: 0.9093 for chemotherapy; 0.8758 for non-chemotherapy).
SHAP analysis revealed feature-specific contributions aligned with clinical relevance, confirming the model’s
interpretability and consistency. Conclusion: Oral candidiasis is highly prevalent among cancer patients,
with distinct risk profiles between those with and without chemotherapy. Machine learning methods such
as sPLS-DA and XGBoost effectively identified and interpreted predictive factors, offering valuable tools for
clinical risk stratification and early prevention in oncology care.
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1. INTRODUCTION

Candida species, particularly Candida albicans,
are commonly found in the oral cavity as part of the
normal microbiota, but can become opportunistic
pathogens under conditions of immunosuppression,
leading to oral candidiasis [1]. This pathogenic
transition is often triggered by local or systemic
disturbances, especially in vulnerable populations
such as cancer patients [1]. Cancer therapies,
especially chemotherapy and radiotherapy, can
compromise immune function, damage the oral
mucosa, and disrupt microbial homeostasis, thereby
promoting Candida overgrowth [1, 2, 4, 5]. Oral
candidiasis is a frequent complication in this setting,
with prevalence rates reaching 39.1% during cancer
treatment and up to 53.5% in patients receiving head
and neck radiotherapy [2, 4]. Clinical features such
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as oral burning, dysgeusia, dysphagia, and mucosal
patches negatively affect quality of life, nutrition,
and may even lead to systemic candidemia or delay
cancer therapy [1, 2, 4]. Moreover, differentiating
candidiasis from radiation- or chemotherapy-induced
mucositis remains a diagnostic challenge [4].
Traditional statistical methods often struggle
to elucidate the complex and potentially nonlinear
relationships among multiple risk factors, potentially
overlooking latent structures or rare yet important
contributors [6, 7]. In contrast, machine learning
offers advanced tools capable of processing
complex datasets, automatically uncovering
hidden patterns, and modeling multidimensional
relationships without strict a priori assumptions [6,
7]. Such techniques have been successfully applied
in medicine to predict disease risk and identify novel
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predictors, including for Candida infections [6, 7].

Although several risk factors for oral candidiasis
in cancer patients have been proposed, the
intricate interactions, particularly those involving
multimodal therapies or detailed behavioral habits
remain insufficiently clarified through conventional
approaches. Many prior studies are limited in scope
or sample size. Our study, titled “An Advanced
Machine Learning Framework to Identify Associated
Factors and Predict the Risk of Oral Candidiasis
in Cancer Patients”, aimed to address these gaps
through two main objectives:

1. To assess factors statistically associated
with oral candidiasis in patients with and without
chemotherapy.

2. To develop and evaluate an XGBoost model
for predicting oral candidiasis risk among cancer
patients.

2. MATERIALS AND METHODS

2.1. Subjects

Eligible participants were adult patients with a
confirmed cancer diagnosis established by oncology
specialists, based on histopathological findings and
relevant imaging studies.

Patients were excluded if they refused to provide
relevant information; had a history of oral mucosal
infections unrelated to Candida (e.g., Herpes simplex
or other ulcerative conditions); were diagnosed
with immunodeficiency disorders (including HIV/
AIDS, systemic lupus erythematosus, or congenital
immunodeficiencies); or were unable to complete
clinical assessments and laboratory procedures due
to psychiatric, physical, or other limiting conditions.

2.2. Research Methods

2.2.1. Study Design and Sample Size

This cross-sectional study was conducted from
October 2024 to May 2025 at the Department of
Oncology and the Department of Parasitology, Hue
University of Medicine and Pharmacy. A total of
69 patients were recruited using a convenience
sampling method.

2.2.2. Data Collection

Patient data were collected through direct
interviews and medical record reviews. Collected
variables included demographic characteristics
(gender, age, BMI), medical history (comorbidities,
smoking status, =20 pack-years, recent antifungal
use), and current clinical condition (presence
of concurrent infections). Cancer-related data
encompassed cancer type, chemotherapy status,
number of cycles and class of chemotherapy agents,
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other concurrent therapies, and relevant risk factors
such as prolonged hospitalization, central venous
catheterization, total parenteral nutrition, and
dialysis. Oral hygiene practices (brushing frequency,
post-meal oral care, denture use) and laboratory
values (complete blood count with detailed leukocyte
differentials, red blood cells, and platelets) were also
recorded. Each patient underwent a focused oral
examination to identify symptoms (burning mouth,
taste change, anorexia, dry mouth) and clinical signs
(white patches, angular cheilitis, ulcers, erythema,
smooth or nodular tongue, depapillated or black
hairy tongue, halitosis).

2.2.3. Sample Collection

Oral swabs were collected in the morning using
sterile cotton swabs after oral hygiene. Samples
were immediately transferred to the Department
of Parasitology, Hue University of Medicine and
Pharmacy Hospital, for same-day analysis.

2.2.4. Laboratory Testing

Oral swab specimens were treated with
potassium hydroxide (KOH) and examined under
light microscopy at 40x magnification to detect
fungal elements. Subsequently, all samples were
cultured on Sabouraud dextrose agar supplemented
with chloramphenicol for fungal isolation. Candida
albicans and Candida non-albicans species were
identified using chromogenic agar. A diagnosis of oral
candidiasis was established based on the isolation of
Candida species from culture.

2.2.5. Data Analysis

2.2.5.1. Data Preprocessing

All variables were entered into SPSS version 27.
Categorical variables were binarized using one-hot
encoding. No significant outliers were identified
upon inspection.

2.2.5.2. Data Stratification

The dataset was divided into two main groups:

- Chemotherapy group: patients who had
completed at least one chemotherapy cycle.

- Non-chemotherapy group: patients who
have not yet received chemotherapy.

2.2.5.3. Data Exploration

Distribution was assessed using skewness,
kurtosis, and Shapiro-Wilk test for normality.
Categorical variables were summarized using

frequencies and percentages. Continuous variables
were reported as mean + SD for normally distributed
data, and median (interquartile range) for non-
normally distributed data.

Group comparisons between chemotherapy and
non-chemotherapy groups were conducted using
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Chi-square test or Fisher’s exact test for categorical
variables, independent samples t-test for normally
distributed continuous variables and Mann—Whitney
U test for non-normally distributed continuous
variables. A p-value <0.05 was considered statistically
significant.

Further analyses were conducted separately for
the chemotherapy and non-chemotherapy groups:

2.2.5.4. Feature selection

Discriminant analysis was conducted using
sparse Partial Least Squares Discriminant Analysis
(sPLS-DA) implemented via the MixOmics package
through the rpy2 interface in Python 3.13. The
analysis incorporated all collected variables,
including anthropometric characteristics, medical
history, clinical signs and symptoms, laboratory
results, cancer type, and treatment modalities.
Prior to modeling, the dataset was preprocessed
with Square Root transformation followed by Auto
Scaling (mean-centering and variance-scaling). The
performance of the sPLS-DA model was evaluated
using the perf function with 5-fold cross-validation
repeated 10 times, in order to assess classification
accuracy and model stability.

The variables selected from the sPLS-DA analysis
were re-evaluated using the same statistical tests
described in the data exploration step.

A correlation matrix was subsequently
constructed to assess multicollinearity among these
variables. Pairs of variables exhibiting a strong
correlation (|r| > 0.8) were considered for exclusion.

2.2.5.5. Model Training

The selected variables identified in the previous
steps were used to train the XGBoost (eXtreme
Gradient Boosting). Those variables were imported
into Python 3.13 using the pandas library. To address
class imbalance between Candida-positive and
Candida-negative groups, the scale_pos_weight
parameter in the XGBoost model was calculated
based on the actual class distribution of the target
variable.

2.2.5.6. Model Optimization

An initial XGBoost model was trained using a
nested stratified K-Fold cross-validation approach
(k=5 for the chemotherapy group and k = 4 for the
non-chemotherapy group), repeated 20 times.

Hyperparameter tuning was performed using
GridSearchCV within each fold. The best-performing

parameters were then used to retrain the model
using the same nested stratified K-Fold scheme (k=5
or k =4, repeated 20 times).

After  hyperparameter  optimization, the
classification threshold was adjusted based on
Youden’s J statistic derived from the ROC curve of
each fold. The final model was retrained using both
the optimized hyperparameters and thresholds
under the same repeated nested stratified K-Fold
scheme.

2.2.5.7. Model Evaluation

The performance of the initial model, the
hyperparameter-optimized model, and the threshold-
optimized model was compared. For each model,
performance metrics including accuracy, precision,
recall, F1-score, and AUC-ROC were calculated across
all folds and summarized as mean values, standard
deviations, and 95% confidence intervals, presented
in a comparative summary table.

2.2.5.8. Model Interpretation

SHAP (SHapley Additive exPlanations) values
were computed for the threshold-optimized XGBoost
model to interpret the contribution of individual
variables to model predictions. Visualization of SHAP
values was performed using the matplotlib library.

3. RESULTS

3.1. Baseline characteristics of Study Participants

Gastrointestinal cancer was the most common
type, accounting for 30.4% in the non-chemotherapy
group and 42% in the chemotherapy group. Surgery
was the most common adjunctive treatment (23
patients). Oral hygiene practices were similar
between groups. Median toothbrushing frequency
was 1 time/day (IQR: 1 - 2; p = 0.933). Rinsing or
brushing after meals was reported by 31.9% of
non-chemotherapy and 27.5% of chemotherapy
patients (p = 0.078). No patients used dentures.
Among chemotherapy patients (N = 38), 31.6%
in the oral candidiasis group and 50.0% in the
non-oral candidiasis group received two or more
agents (p = 1.000), with no significant differences in
chemotherapeutic classes used (p 2 0.433) or median
number of cycles (2 cycles, p = 0.709).

Oral candidiasis was diagnosed in 11 non-
chemotherapy patients(15.9%) and 14 chemotherapy
patients (20.3%), with Candida positivity rates of
35.4% and 36.8%, respectively.
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Table 1. Clinical and Laboratory Characteristics of the Study Population.

Non chemotherapy Chemotherapy
Baseline characteristics (N=31) (N=38) p
N % N %
Symptoms and signs

Oral burning pain 6 8.7 2 2.9 0.127*

Taste change, anorexia 8 11.6 18 26.1 0.066
Symptoms

Dry mouth 13 18.8 19 27.5 0.504

Asymptomatic 11 15.9 15 21.7 0.734

White patches on mucosa 11 15.9 14 20.3 0.907

Redness at mouth corners 5 7.2 8 11.6 0.603

Red inflamed oral mucosa 2 2.9 3 4.3 1*
Signs S{ﬁi‘;;"”g”e or small 1 3.2 4 58  0.370*

sgf:siwaitaoduiongue ! 14 0 0 0.449%

Halitosis 12 17.4 13 18.8 0.699

No signs 12 17.4 15 21.7 0.948

Blood cell count in complete blood count (G/L)
White blood cell count Median (IQR) 7.99 (5.33-10.66) 8.18(5.84-10.52) 0.554
Neutrophil count Mean * SD 9.90+1.79 8.72 +2.52 0.032
Lymphocyte count Median (IQR) 2.58 (1.58 - 3.58) 3.77 (2.27 -5.27) 0.031
Monocyte count Mean = SD 1.27+0.41 1.38+£0.53 0.311
Eosinophil count Median (IQR) 0.20 (0.07 - 0.33) 0.20(0.00-0.41) 0.933
Basophil count Median (IQR) 0.06 (0.01-0.10) 0.08 (0.03-0.13) 0.813
Red blood cell count  Median (IQR) 4.22 (3.69 - 4.75) 3.78(3.28-4.29) 0.156
Platelet count Median (IQR) 266 (206.5 - 325.5) 285(201.0-369.0) 0.405
Direct microscopic and culture results
Oral candidiasis 11 15.9 14 20.3 0.907
Note: % within total, (*) Fisher’s exact test.
3.2. Investigation of Factors Associated with patients.

Oral Candidiasis in Chemotherapy Patients All selected variables showed statistically

Oral candidiasis and non oral candidiasis (Figure
1A), with Component 1 and Component 2 explaining
17.7% and 7.6% of the variance, respectively. Minimal
overlap in the 95% confidence intervals between
groups indicated good discriminative capacity.

Key variables contributing to group separation
were identified based on loading values (Figure 1B).
Clinical features such as taste alteration, anorexia,
dry mouth, concurrent bacterial infection, white
patches on the mucosa, and elevated neutrophil
count were associated with infection. In contrast,
higher lymphocyte and basophil counts and absence
of symptoms or signs were linked to non-infected

HUE JOURNAL OF MEDICINE AND PHARMACY ISSN 3030-4318; eISSN: 3030-4326

significant differences between groups (p < 0.01,
Figure 1C), reinforcing their discriminatory potential.

A correlation heatmap (Figure 1D) revealed strong
co-occurrence of symptoms, particularly between
taste change, anorexia, dry mouth, and white patches
(r = 0.63 - 0.70). The variable “asymptomatic” was
negatively correlated with these features (r = -0.62
to -0.77). Hematologically, lymphocyte and basophil
counts were positively correlated (r = 0.66) and both
negatively correlated with neutrophils (r =-0.94 and
—0.74, respectively). Concurrent bacterial infection
correlated positively with neutrophils (r = 0.65) and
negatively with lymphocytes (r = -0.65).
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Figure 1. Feature selection in chemotherapy group. (A) sPLS-DA scatter plot showing separation of Oral
candidiasis and non oral candidiasis patients. (B) Variable importance based on Component 1 loadings. (C)
Distribution and statistical comparison of selected features. (D) Correlation matrix of key features. Note: %

within total, (*) Fisher’s exact test

Figures 2A and 2B illustrate the contribution of
various features to the XGBoost model’s prediction of
oral candidiasis risk. The presence of white patches
on the mucosa was the most influential feature,
with the highest mean SHAP value (~0.215), and was
strongly associated with an increased probability
of Candida-positive classification (Figure 2B). Dry
mouth was the second most influential clinical
symptom (mean SHAP value ~0.152), significantly
increasing the predicted probability of infection.
Among hematological indices, lymphocyte count
was notably impactful (mean SHAP value ~0.126),

with lower values (blue) increasing the predicted risk
(Figure 2B). Other features like basophil count, taste
change, anorexia, concurrent bacterial infection,
and neutrophil count contributed to a lesser
degree. Conversely, absence of symptoms and signs
had minimal or zero SHAP values, indicating their
minimal contribution to positive predictions and
their characteristic presence in Candida-negative
cases.

Figures 2C and 2D demonstrate how individual
features contribute to XGBoost predictions, revealing
context-dependent influences. For Sample 10 (Figure
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2C), the absence of white patches on mucosa (SHAP
= -0.22) was the strongest negative contributor,
correctly driving a negative prediction despite minor
positive influences from dry mouth and elevated
lymphocyte count. Conversely, in Sample 37
(Figure 2D), the absence of white patches also had
a strong negative SHAP (-0.22). However, this was

(A) Sign: White patches on mucosa _ 0,21522 (B)

Symptom: Dry mouth _ 0,18270
Lymphocyte count _ 012587
Basophil count - 0,06186
Symptom: Taste change, ancrexia - 0,04382
Concurrent bacterial infection - 0,03760
Neutrophil count - 0,02404
symptom: Asymptomatic | 000320

Sign: No signs  0,00000

| | I | | |
0,00000 005000 0,000 015000 020000  (0,25000
Mean SHAP val.e

©) |
e
' +0.02
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1 = Symptom: Dry mouth

26 = Lymphocyte count

Basophil count

Symptom: Taste change. anorexia
) = Concurrent bacterial infection

7 = Neutrophil count
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overpowered by strong positive contributions from
dry mouth, lymphocyte count, and notably, a basophil
count of 0 (which contributed positively here, unlike
Sample 10), leading to a correct positive prediction.
This comparison highlights how a feature’s impact
can reverse or be outweighed by other factors
depending on the overall clinical profile.
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Symptom: Dry mouth I |

Lymphocyte count I Voo |
Basophil count

Symptom: Taste change. anorexia I |

Feature value
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Figure 2. Model Interpretation Using SHAP. (A) SHAP summary plot showing the mean absolute SHAP
values of each feature. (B) SHAP beeswarm plot illustrating the individual impact of each feature on the
model’s prediction. (C) SHAP waterfall plot for Sample 10 (true negative case). (D) SHAP waterfall plot for
Sample 37 (true positive case).

3.3. Investigation of Factors Associated with
Oral Candidiasis in Non-Chemotherapy Patients

sPLS-DA  analysis demonstrated effective
separation between Candida-positive and Candida-
negative patients (Figure 3A), with Components 1
and 2 accounting for 17.2% and 8.4% of the variance,
respectively.

Top contributing variables (Figure 3B) included
clinical symptoms—taste change, anorexia, dry
mouth, white patches, halitosis—and laboratory
findings such as elevated neutrophil count and
reduced lymphocyte/basophil counts. Absence of
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symptoms or signs was more common in the non-
infected group.

Statistical ~ analysis  confirmed  significant
differences (p < 0.05 or p < 0.01) for all sPLS-DA-
selected variables except total white blood cell count
(Figure 3C). Notably, antibiotic use and poor oral
hygiene were associated with infection, while post-
meal oral care was more frequent in non-infected
patients.

Correlation matrix (Figure 3D) revealed strong
associations among key symptoms. Dry mouth was
highly correlated with halitosis (r = 0.80), and white
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patches correlated positively with halitosis (r = 0.66),
taste changes (r = 0.64), and dry mouth (r = 0.60). In
contrast, “no signs” was negatively correlated with
these symptoms (r =—0.59 to —0.68).

neutrophil count (r = 0.42) and white patches (r =
0.15), while rinsing/brushing after meals inversely
correlated with dry mouth (r =—0.46). Red blood cell
count showed negative correlations with dry mouth

Antibiotic use correlated positively with (r=-0.45) and halitosis (r = —0.52).
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.
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Figure 3. Feature selection in non-chemotherapy group. (A) sPLS-DA scatter plot showing separation of
Oral candidiasis and non oral candidiasis patients. (B) Variable importance based on Component 1 loadings.
(C) Distribution and statistical comparison of selected features. (D) Correlation matrix of key features. Note:

Note: % within total, (*) Fisher’s exact test
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After excluding total white blood cell count, the
XGBoost model was run with 9 selected variables.
Figures 4A and 4B reveal halitosis as the strongest
predictor of oral candidiasis in the XGBoost model,
with the highest mean absolute SHAP value (-0.5862)
strongly increasing predicted infection probability.
Lower red blood cell counts and white patches on
mucosa also showed moderate positive influence.
Other features like oral hygiene, antibiotic use, dry
mouth, taste change, anorexia, and absence of signs
had minimal impact.

Figures 4C and 4D present SHAP waterfall plots
for two cases, illustrating feature contributions to
oral candidiasis predictions. Sample 9 (Figure 4C),
a true-negative case, had a model output of f(x) =
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—0.273. Halitosis (SHAP = —0.41) was the strongest
negative contributor, along with red blood cell
count (SHAP = -0.16), correctly driving a negative
prediction despite positive influences from white
patches and neutrophil count. Sample 28 (Figure 4D),
a false-negative case, showed a model output of f(x)
—0.683, incorrectly classifying an infected patient.
SimilartoSample9, halitosis (SHAP=-0.41), red blood
cell count, and white patches had strong negative
influences. Despite a high neutrophil count (SHAP
= +0.21), it was insufficient to reverse the negative
classification. This comparison highlights halitosis
as a consistent negative predictor, but in Sample
28, the model underestimated positive-driving
variables, leading to the false-negative outcome.
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3.4. Comparative Performance of XGBoost
Models in Chemotherapy and Non- Chemotherapy
Groups

In the chemotherapy group, accuracy
remained consistently high across all models,
with slight improvements in precision after

hyperparameter tuning and a notable increase in
recall following threshold optimization. The F1-score
rose modestly, and AUC-ROC remained excellent.

In contrast, the non-chemotherapy group
showed a slightly lower baseline accuracy, which
increased after threshold optimization. Precision
also improved marginally but with wider variability.
Unlike the chemotherapy group, recall decreased

with threshold adjustment, indicating a trade-off
with improved precision. The Fl-score showed a
similar trend. However, AUC-ROC improved steadily,
indicating enhanced discrimination overall.

When comparing the two groups, the
chemotherapy group consistently achieved higher
accuracy, recall, and AUC-ROC values than the non-
chemotherapy group, suggesting better model
performance when treatment-specific variables
were included. The trade-off between precision
and recall was more pronounced in the non-
chemotherapy group, highlighting differences
in variable contributions and prediction stability
between patient cohorts.

Table 2. Comparative performance of the initial, hyperparameter-optimized, and threshold-optimized
XGBoost models in chemotherapy and non-chemotherapy groups

Chemotherapy group Non-chemotherapy group
Metrics N Hyperparameter ThrfesI.\oId - Hyper[?ar.ameter Thrt.esf.\old
Initial model .. optimized Initial model optimized optimized
optimized model
model model model

Accuracy 0.7950+0.1293 0.7987 +0.1310 0.7975+0.1344 0.7460 + 0.1299 0.7768 +0.1497 0.7795 +0.1429
Precision 0.7190+0.1892 0.727540.1861 0.7021+0.1722 0.6654 +0.2367 0.6994 +0.2799 0.7323 £ 0.3300
Recall  0.8233+0.2079 0.8467 +0.2182 0.9333 £0.1491 0.6625 + 0.2541 0.6813 £0.2791 0.5813 +0.2946
Fl-score 0.7500+0.1621 0.7572+0.1620 0.7840+0.1335 0.6361 +0.1984 0.6669 * 0.2462 0.6203 +0.2764
AUC-ROC 0.8960+0.0988 0.9093 £0.0924 0.9093 +0.0924 0.8246 +0.1273 0.8758 +0.1183 0.8758 + 0.1183
4. DISCUSSION also relevant, potentially due to immunosuppression

Our study of 69 cancer patients found a 36.2%
prevalence of oral candidiasis, which is lower
than previous reports [8-10]. We observed similar
prevalence rates in both non-chemotherapy (35.5%)
and chemotherapy-treated (36.8%) groups, differing
from some earlier findings [8]. These discrepancies
might stem from our sample size, diagnostic methods,
limited cancer type diversity, and varying case
definitions. Despite this, our findings underscore the
increased risk of fungal infection in cancer patients
compared to those with internal medical patients
[11]. The significant prevalence in non-chemotherapy
patients also suggests that malignancy itself, or pre-
existing factors, may contribute to fungal invasion.

In chemotherapy patients, local clinical features
and hematologic parameters were central predictors
of oral candidiasis. SHAP analysis identified white
patches on the mucosa, dry mouth, and taste
changes/anorexia as most influential, aligning with
known clinical presentations and the impact of
chemotherapy on salivary components and nutrition
[1, 5, 10, 11]. Concurrent bacterial infections were

or microbiome disruption [12]. Lymphopenia was
a strong hematologic predictor, consistent with the
role of CD4+ T cells in antifungal immunity [13]. While
sPLS-DA indicated higher neutrophil counts in infected
patients, SHAP analysis assigned lower importance,
possibly reflecting reactive neutrophilia or functional
impairment post-chemotherapy [14]. The role of
basophils warrants further investigation [15].

For non chemotherapy patients, predictive
variables leaned towards local and behavioral
factors. Halitosis had the strongest SHAP influence,
possibly linked to fungal/bacterial overgrowth [16,
17]. White patches and xerostomia also retained
predictive value. Low red blood cell count showed
a notable association, as anemia can compromise
mucosal integrity or alter iron availability, promoting
fungal growth [18, 19]. Increased neutrophil count
was observed in infected patients, potentially
indicating local inflammation. Behavioral factors like
antibiotic use (disrupting microbiota) and poor oral
hygiene were also key, reinforcing the importance of
preventive care [12].
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A strength of this study lies in the application of
integrated machine learning approaches: sPLS-DA
for variable selection and XGBoost for predictive
modeling, with SHAP providing model interpretability.
Both models demonstrated robust performance with
AUC-ROC values > 0.87 (0.9093 in chemotherapy and
0.8758 in non-chemotherapy groups), comparable
to prior studies using XGBoost in medical prediction
tasks[20-23]. The use of SHAP allowed deeperinsight
into the contribution and direction of influence of
each variable, improving transparency and potential
clinical utility [24]. Importantly, SHAP confirmed that
the most influential predictors closely matched those
identified via sPLS-DA, enhancing model credibility.

Differences in key predictors between the two
patient groups highlight distinct pathophysiological
mechanisms: immune suppression and systemic
alterations in the chemotherapy group versus local
factors and hygiene-related variables in the non-
chemotherapy group. These findings support the
rationale for building separate models tailored to
specific patient populations, as SHAP analysis reveals
that the predictive importance of variables can shift
across contexts.

Despite the modest sample size, we implemented
a carefully designed and rigorous modeling pipeline
to minimize overfitting-an inherent risk in high-
dimensional, low-sample-size datasets. This included
proper data preprocessing, nested stratified cross-
validation with multiple repetitions, hyperparameter
tuning, threshold optimization, and interpretability
analysis. Our results demonstrate that even complex
machine learning models can yield robust and
clinically meaningful outcomes when applied with
appropriate methodological safeguards. This serves
as an important methodological contribution and a
practical example for future studies dealing with small
datasets.

The cross-sectional design precludes the
establishment of causal relationships. The relatively
small sample size (N = 69), particularly after subgroup
stratification, reduces statistical power and limits
the generalizability of the findings. This may also
compromise the robustness of the machine learning
models due to the high dimensionality of the data.
The study was conducted at a single center, which
may not reflect the broader demographic or clinical
variability seen in other institutions or geographic
regions. Additionally, some potentially important
variables were either incompletely collected or
not assessed, including detailed cancer staging,
specific chemotherapy regimens, nutritional status
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indicators, salivary pH, and denture use.

While machine learning has rapidly expanded
across numerous disciplines in recent years, its
application in clinical research in Vietnam remains
limited. To the best of our knowledge, this is one of
the first studies in Vietnam to integrate advanced
machine learning algorithms, specifically the
combination of sPLS-DA, XGBoost, and SHAP for
the analysis and prediction of clinical outcomes.
Globally, this also represents one of the pioneering
applications of advanced machine learning in the
investigation of oral candidiasis, a condition that
has received relatively little attention in predictive
modeling research. At present, there is no strong
evidence to support universal screening for oral
candidiasis across all oncology populations, and such
an approach would not be feasible. Our findings
suggest that targeted, risk-based strategies may
be more clinically relevant. Future multicenter,
prospective studies with larger cohorts, additional
variables, and advanced diagnostics such as PCR are
needed to strengthen the validity of machine learning
models while enabling the creation of external
validation cohorts to enhance their reliability and
generalizability. Ultimately, these advances may
facilitate the development of practical clinical tools
such as web-based calculators, mobile applications,
or simplified risk scores that support oncologists
in stratifying patients by infection risk. Such tools
would allow clinicians to focus diagnostic testing on
high-risk individuals, enabling earlier detection and
timely preventive or therapeutic interventions.

5. CONCLUSION

In this study, the prevalence of oral Candida
infection was high in both chemotherapy
(36.8%) and non-chemotherapy (35.4%) cancer
patient groups. Using sPLS-DA, we identified key
discriminatory variables, including local clinical signs
(e.g., dry mouth, white patches), hematological
indices (e.g., lymphocyte and red blood cell counts),
and background factors (e.g., antibiotic use, oral
hygiene). These variables were incorporated into
separate XGBoost models for each group, both of
which achieved strong predictive performance (AUC-
ROC > 0.87). SHAP interpretation confirmed the
importance and directionality of selected features,
aligning with clinical findings. The integration of sPLS-
DA and XGBoost provided both robust prediction and
insights into the pathogenesis of oral candidiasis,
supporting risk-based monitoring and prevention
strategies in oncology care.
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