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Abstract
Background: Oral candidiasis is a common opportunistic infection in cancer patients, particularly those 

undergoing chemotherapy. Multiple clinical and hematological factors contribute to infection risk, but their 
complex interactions remain poorly understood using conventional statistical methods. Objectives: To identify 
associated factors, and develop machine learning models to predict infection risk of oral candidiasis among 
cancer patients receiving and not yet receiving chemotherapy. Materials and Methods: This cross-sectional 
study enrolled 69 cancer patients at Hue University of Medicine and Pharmacy Hospital between October 2024 
and May 2025. Patients underwent clinical examinations, laboratory testing, direct oral swab microscopy and 
cultivation for candidiasis diagnosis. Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was used 
to select relevant features. eXtreme Gradient Boosting (XGBoost) models were developed for each patient 
group (chemotherapy and non-chemotherapy) and interpreted using SHapley Additive exPlanations (SHAP) 
value method. Results: Oral candidiasis was detected in 36.8% of chemotherapy patients and 35.4% of non-
chemotherapy patients. Key associated factors included dry mouth, taste change, white patches on mucosa, 
low lymphocyte or red blood cell counts, poor oral hygiene, and antibiotic use. XGBoost models achieved 
high performance in both groups (AUC-ROC: 0.9093 for chemotherapy; 0.8758 for non-chemotherapy). 
SHAP analysis revealed feature-specific contributions aligned with clinical relevance, confirming the model’s 
interpretability and consistency. Conclusion: Oral candidiasis is highly prevalent among cancer patients, 
with distinct risk profiles between those with and without chemotherapy. Machine learning methods such 
as sPLS-DA and XGBoost effectively identified and interpreted predictive factors, offering valuable tools for 
clinical risk stratification and early prevention in oncology care.
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1. INTRODUCTION
Candida species, particularly Candida albicans, 

are commonly found in the oral cavity as part of the 
normal microbiota, but can become opportunistic 
pathogens under conditions of immunosuppression, 
leading to oral candidiasis [1]. This pathogenic 
transition is often triggered by local or systemic 
disturbances, especially in vulnerable populations 
such as cancer patients [1]. Cancer therapies, 
especially chemotherapy and radiotherapy, can 
compromise immune function, damage the oral 
mucosa, and disrupt microbial homeostasis, thereby 
promoting Candida overgrowth [1, 2, 4, 5]. Oral 
candidiasis is a frequent complication in this setting, 
with prevalence rates reaching 39.1% during cancer 
treatment and up to 53.5% in patients receiving head 
and neck radiotherapy [2, 4]. Clinical features such 

as oral burning, dysgeusia, dysphagia, and mucosal 
patches negatively affect quality of life, nutrition, 
and may even lead to systemic candidemia or delay 
cancer therapy [1, 2, 4]. Moreover, differentiating 
candidiasis from radiation- or chemotherapy-induced 
mucositis remains a diagnostic challenge [4].

Traditional statistical methods often struggle 
to elucidate the complex and potentially nonlinear 
relationships among multiple risk factors, potentially 
overlooking latent structures or rare yet important 
contributors [6, 7]. In contrast, machine learning 
offers advanced tools capable of processing 
complex datasets, automatically uncovering 
hidden patterns, and modeling multidimensional 
relationships without strict a priori assumptions [6, 
7]. Such techniques have been successfully applied 
in medicine to predict disease risk and identify novel 
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predictors, including for Candida infections [6, 7].
Although several risk factors for oral candidiasis 

in cancer patients have been proposed, the 
intricate interactions, particularly those involving 
multimodal therapies or detailed behavioral habits 
remain insufficiently clarified through conventional 
approaches. Many prior studies are limited in scope 
or sample size. Our study, titled “An Advanced 
Machine Learning Framework to Identify Associated 
Factors and Predict the Risk of Oral Candidiasis 
in Cancer Patients”, aimed to address these gaps 
through two main objectives:

1. To assess factors statistically associated 
with oral candidiasis in patients with and without 
chemotherapy.

2. To develop and evaluate an XGBoost model 
for predicting oral candidiasis risk among cancer 
patients.

2. MATERIALS AND METHODS 
2.1. Subjects
Eligible participants were adult patients with a 

confirmed cancer diagnosis established by oncology 
specialists, based on histopathological findings and 
relevant imaging studies.

Patients were excluded if they refused to provide 
relevant information; had a history of oral mucosal 
infections unrelated to Candida (e.g., Herpes simplex 
or other ulcerative conditions); were diagnosed 
with immunodeficiency disorders (including HIV/
AIDS, systemic lupus erythematosus, or congenital 
immunodeficiencies); or were unable to complete 
clinical assessments and laboratory procedures due 
to psychiatric, physical, or other limiting conditions.

2.2. Research Methods
2.2.1. Study Design and Sample Size
This cross-sectional study was conducted from 

October 2024 to May 2025 at the Department of 
Oncology and the Department of Parasitology, Hue 
University of Medicine and Pharmacy. A total of 
69 patients were recruited using a convenience 
sampling method.

2.2.2. Data Collection
Patient data were collected through direct 

interviews and medical record reviews. Collected 
variables included demographic characteristics 
(gender, age, BMI), medical history (comorbidities, 
smoking status, ≥20 pack-years, recent antifungal 
use), and current clinical condition (presence 
of concurrent infections). Cancer-related data 
encompassed cancer type, chemotherapy status, 
number of cycles and class of chemotherapy agents, 

other concurrent therapies, and relevant risk factors 
such as prolonged hospitalization, central venous 
catheterization, total parenteral nutrition, and 
dialysis. Oral hygiene practices (brushing frequency, 
post-meal oral care, denture use) and laboratory 
values (complete blood count with detailed leukocyte 
differentials, red blood cells, and platelets) were also 
recorded. Each patient underwent a focused oral 
examination to identify symptoms (burning mouth, 
taste change, anorexia, dry mouth) and clinical signs 
(white patches, angular cheilitis, ulcers, erythema, 
smooth or nodular tongue, depapillated or black 
hairy tongue, halitosis).

2.2.3. Sample Collection
Oral swabs were collected in the morning using 

sterile cotton swabs after oral hygiene. Samples 
were immediately transferred to the Department 
of Parasitology, Hue University of Medicine and 
Pharmacy Hospital, for same-day analysis.

2.2.4. Laboratory Testing
Oral swab specimens were treated with 

potassium hydroxide (KOH) and examined under 
light microscopy at 40× magnification to detect 
fungal elements. Subsequently, all samples were 
cultured on Sabouraud dextrose agar supplemented 
with chloramphenicol for fungal isolation. Candida 
albicans and Candida non-albicans species were 
identified using chromogenic agar. A diagnosis of oral 
candidiasis was established based on the isolation of 
Candida species from culture.

2.2.5. Data Analysis
2.2.5.1. Data Preprocessing
All variables were entered into SPSS version 27. 

Categorical variables were binarized using one-hot 
encoding. No significant outliers were identified 
upon inspection.

2.2.5.2. Data Stratification
The dataset was divided into two main groups:
-	 Chemotherapy group: patients who had 

completed at least one chemotherapy cycle.
-	 Non-chemotherapy group: patients who 

have not yet received chemotherapy.
2.2.5.3. Data Exploration
Distribution was assessed using skewness, 

kurtosis, and Shapiro–Wilk test for normality. 
Categorical variables were summarized using 
frequencies and percentages. Continuous variables 
were reported as mean ± SD for normally distributed 
data, and median (interquartile range) for non-
normally distributed data.

Group comparisons between chemotherapy and 
non-chemotherapy groups were conducted using 
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Chi-square test or Fisher’s exact test for categorical 
variables, independent samples t-test for normally 
distributed continuous variables and Mann–Whitney 
U test for non-normally distributed continuous 
variables. A p-value < 0.05 was considered statistically 
significant.

Further analyses were conducted separately for 
the chemotherapy and non-chemotherapy groups:

2.2.5.4. Feature selection
Discriminant analysis was conducted using 

sparse Partial Least Squares Discriminant Analysis 
(sPLS-DA) implemented via the MixOmics package 
through the rpy2 interface in Python 3.13. The 
analysis incorporated all collected variables, 
including anthropometric characteristics, medical 
history, clinical signs and symptoms, laboratory 
results, cancer type, and treatment modalities. 
Prior to modeling, the dataset was preprocessed 
with Square Root transformation followed by Auto 
Scaling (mean-centering and variance-scaling). The 
performance of the sPLS-DA model was evaluated 
using the perf function with 5-fold cross-validation 
repeated 10 times, in order to assess classification 
accuracy and model stability.

The variables selected from the sPLS-DA analysis 
were re-evaluated using the same statistical tests 
described in the data exploration step.

A correlation matrix was subsequently 
constructed to assess multicollinearity among these 
variables. Pairs of variables exhibiting a strong 
correlation (|r| ≥ 0.8) were considered for exclusion.

2.2.5.5. Model Training
The selected variables identified in the previous 

steps were used to train the XGBoost (eXtreme 
Gradient Boosting). Those variables were imported 
into Python 3.13 using the pandas library. To address 
class imbalance between Candida-positive and 
Candida-negative groups, the scale_pos_weight 
parameter in the XGBoost model was calculated 
based on the actual class distribution of the target 
variable.

2.2.5.6. Model Optimization
An initial XGBoost model was trained using a 

nested stratified K-Fold cross-validation approach 
(k=5 for the chemotherapy group and k = 4 for the 
non-chemotherapy group), repeated 20 times.

Hyperparameter tuning was performed using 
GridSearchCV within each fold. The best-performing 

parameters were then used to retrain the model 
using the same nested stratified K-Fold scheme (k = 5 
or k = 4, repeated 20 times).

After hyperparameter optimization, the 
classification threshold was adjusted based on 
Youden’s J statistic derived from the ROC curve of 
each fold. The final model was retrained using both 
the optimized hyperparameters and thresholds 
under the same repeated nested stratified K-Fold 
scheme.

2.2.5.7. Model Evaluation
The performance of the initial model, the 

hyperparameter-optimized model, and the threshold-
optimized model was compared. For each model, 
performance metrics including accuracy, precision, 
recall, F1-score, and AUC-ROC were calculated across 
all folds and summarized as mean values, standard 
deviations, and 95% confidence intervals, presented 
in a comparative summary table.

2.2.5.8. Model Interpretation
SHAP (SHapley Additive exPlanations) values 

were computed for the threshold-optimized XGBoost 
model to interpret the contribution of individual 
variables to model predictions. Visualization of SHAP 
values was performed using the matplotlib library.

3. RESULTS
3.1. Baseline characteristics of Study Participants
Gastrointestinal cancer was the most common 

type, accounting for 30.4% in the non-chemotherapy 
group and 42% in the chemotherapy group. Surgery 
was the most common adjunctive treatment (23 
patients). Oral hygiene practices were similar 
between groups. Median toothbrushing frequency 
was 1 time/day (IQR: 1 - 2; p = 0.933). Rinsing or 
brushing after meals was reported by 31.9% of 
non-chemotherapy and 27.5% of chemotherapy 
patients (p = 0.078). No patients used dentures. 
Among chemotherapy patients (N = 38), 31.6% 
in the oral candidiasis group and 50.0% in the 
non-oral candidiasis group received two or more 
agents (p = 1.000), with no significant differences in 
chemotherapeutic classes used (p ≥ 0.433) or median 
number of cycles (2 cycles, p = 0.709).

Oral candidiasis was diagnosed in 11 non-
chemotherapy patients (15.9%) and 14 chemotherapy 
patients (20.3%), with Candida positivity rates of 
35.4% and 36.8%, respectively.
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Table 1.  Clinical and Laboratory Characteristics of the Study Population.

Baseline characteristics
Non chemotherapy 

(N = 31)
Chemotherapy 

(N =3 8) p
N % N %

Symptoms and signs

Symptoms

Oral burning pain 6 8.7 2 2.9 0.127*

Taste change, anorexia 8 11.6 18 26.1 0.066

Dry mouth 13 18.8 19 27.5 0.504

Asymptomatic 11 15.9 15 21.7 0.734

Signs

White patches on mucosa 11 15.9 14 20.3 0.907

Redness at mouth corners 5 7.2 8 11.6 0.603

Red inflamed oral mucosa 2 2.9 3 4.3 1*
Glossy tongue or small 
papillae 1 3.2 4 5.8 0.370*

Erythematous
depapillated tongue 1 1.4 0 0 0.449*

Halitosis 12 17.4 13 18.8 0.699

No signs 12 17.4 15 21.7 0.948

Blood cell count in complete blood count (G/L)
White blood cell count Median (IQR) 7.99 (5.33 - 10.66) 8.18 (5.84 - 10.52) 0.554
Neutrophil count Mean ± SD 9.90 ± 1.79 8.72 ± 2.52 0.032
Lymphocyte count Median (IQR) 2.58 (1.58 - 3.58) 3.77 (2.27 - 5.27) 0.031
Monocyte count Mean ± SD 1.27 ± 0.41 1.38 ± 0.53 0.311
Eosinophil count Median (IQR) 0.20 (0.07 - 0.33) 0.20 (0.00 - 0.41) 0.933
Basophil count Median (IQR) 0.06 (0.01 - 0.10) 0.08 (0.03 - 0.13) 0.813
Red blood cell count Median (IQR) 4.22 (3.69 - 4.75) 3.78 (3.28 - 4.29) 0.156
Platelet count Median (IQR) 266 (206.5 - 325.5) 285 (201.0 - 369.0) 0.405

Direct microscopic and culture results
Oral candidiasis 11 15.9 14 20.3 0.907

Note: % within total, (*) Fisher’s exact test.
3.2. Investigation of Factors Associated with 

Oral Candidiasis in Chemotherapy Patients
Oral candidiasis and non oral candidiasis (Figure 

1A), with Component 1 and Component 2 explaining 
17.7% and 7.6% of the variance, respectively. Minimal 
overlap in the 95% confidence intervals between 
groups indicated good discriminative capacity.

Key variables contributing to group separation 
were identified based on loading values (Figure 1B). 
Clinical features such as taste alteration, anorexia, 
dry mouth, concurrent bacterial infection, white 
patches on the mucosa, and elevated neutrophil 
count were associated with infection. In contrast, 
higher lymphocyte and basophil counts and absence 
of symptoms or signs were linked to non-infected 

patients.
All selected variables showed statistically 

significant differences between groups (p < 0.01, 
Figure 1C), reinforcing their discriminatory potential.

A correlation heatmap (Figure 1D) revealed strong 
co-occurrence of symptoms, particularly between 
taste change, anorexia, dry mouth, and white patches 
(r = 0.63 - 0.70). The variable “asymptomatic” was 
negatively correlated with these features (r = -0.62 
to -0.77). Hematologically, lymphocyte and basophil 
counts were positively correlated (r = 0.66) and both 
negatively correlated with neutrophils (r = -0.94 and 
–0.74, respectively). Concurrent bacterial infection 
correlated positively with neutrophils (r = 0.65) and 
negatively with lymphocytes (r = -0.65).
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Figure 1. Feature selection in chemotherapy group. (A) sPLS-DA scatter plot showing separation of Oral 
candidiasis and non oral candidiasis patients. (B) Variable importance based on Component 1 loadings. (C) 
Distribution and statistical comparison of selected features. (D) Correlation matrix of key features. Note: % 
within total, (*) Fisher’s exact test

    Figures 2A and 2B illustrate the contribution of 
various features to the XGBoost model’s prediction of 
oral candidiasis risk. The presence of white patches 
on the mucosa was the most influential feature, 
with the highest mean SHAP value (~0.215), and was 
strongly associated with an increased probability 
of Candida-positive classification (Figure 2B). Dry 
mouth was the second most influential clinical 
symptom (mean SHAP value ~0.152), significantly 
increasing the predicted probability of infection. 
Among hematological indices, lymphocyte count 
was notably impactful (mean SHAP value ~0.126), 

with lower values (blue) increasing the predicted risk 
(Figure 2B). Other features like basophil count, taste 
change, anorexia, concurrent bacterial infection, 
and neutrophil count contributed to a lesser 
degree. Conversely, absence of symptoms and signs 
had minimal or zero SHAP values, indicating their 
minimal contribution to positive predictions and 
their characteristic presence in Candida-negative 
cases.

Figures 2C and 2D demonstrate how individual 
features contribute to XGBoost predictions, revealing 
context-dependent influences. For Sample 10 (Figure 
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2C), the absence of white patches on mucosa (SHAP 
= –0.22) was the strongest negative contributor, 
correctly driving a negative prediction despite minor 
positive influences from dry mouth and elevated 
lymphocyte count. Conversely, in Sample 37 
(Figure 2D), the absence of white patches also had 
a strong negative SHAP (–0.22). However, this was 

overpowered by strong positive contributions from 
dry mouth, lymphocyte count, and notably, a basophil 
count of 0 (which contributed positively here, unlike 
Sample 10), leading to a correct positive prediction. 
This comparison highlights how a feature’s impact 
can reverse or be outweighed by other factors 
depending on the overall clinical profile.

Figure 2. Model Interpretation Using SHAP. (A) SHAP summary plot showing the mean absolute SHAP 
values of each feature. (B) SHAP beeswarm plot illustrating the individual impact of each feature on the 

model’s prediction. (C) SHAP waterfall plot for Sample 10 (true negative case). (D) SHAP waterfall plot for 
Sample 37 (true positive case).

3.3. Investigation of Factors Associated with 
Oral Candidiasis in Non-Chemotherapy Patients

sPLS-DA analysis demonstrated effective 
separation between Candida-positive and Candida-
negative patients (Figure 3A), with Components 1 
and 2 accounting for 17.2% and 8.4% of the variance, 
respectively.

Top contributing variables (Figure 3B) included 
clinical symptoms—taste change, anorexia, dry 
mouth, white patches, halitosis—and laboratory 
findings such as elevated neutrophil count and 
reduced lymphocyte/basophil counts. Absence of 

symptoms or signs was more common in the non-
infected group.

Statistical analysis confirmed significant 
differences (p < 0.05 or p < 0.01) for all sPLS-DA-
selected variables except total white blood cell count 
(Figure 3C). Notably, antibiotic use and poor oral 
hygiene were associated with infection, while post-
meal oral care was more frequent in non-infected 
patients.

Correlation matrix (Figure 3D) revealed strong 
associations among key symptoms. Dry mouth was 
highly correlated with halitosis (r = 0.80), and white 
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patches correlated positively with halitosis (r = 0.66), 
taste changes (r = 0.64), and dry mouth (r = 0.60). In 
contrast, “no signs” was negatively correlated with 
these symptoms (r = –0.59 to –0.68).

Antibiotic use correlated positively with 

neutrophil count (r = 0.42) and white patches (r = 
0.15), while rinsing/brushing after meals inversely 
correlated with dry mouth (r = –0.46). Red blood cell 
count showed negative correlations with dry mouth 
(r = –0.45) and halitosis (r = –0.52).

Figure 3. Feature selection in non-chemotherapy group. (A) sPLS-DA scatter plot showing separation of 
Oral candidiasis and non oral candidiasis patients. (B) Variable importance based on Component 1 loadings. 
(C) Distribution and statistical comparison of selected features. (D) Correlation matrix of key features. Note: 

Note: % within total, (*) Fisher’s exact test
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After excluding total white blood cell count, the 
XGBoost model was run with 9 selected variables. 
Figures 4A and 4B reveal halitosis as the strongest 
predictor of oral candidiasis in the XGBoost model, 
with the highest mean absolute SHAP value (-0.5862) 
strongly increasing predicted infection probability. 
Lower red blood cell counts and white patches on 
mucosa also showed moderate positive influence. 
Other features like oral hygiene, antibiotic use, dry 
mouth, taste change, anorexia, and absence of signs 
had minimal impact.

Figures 4C and 4D present SHAP waterfall plots 
for two cases, illustrating feature contributions to 
oral candidiasis predictions. Sample 9 (Figure 4C), 
a true-negative case, had a model output of f(x) = 

–0.273. Halitosis (SHAP = –0.41) was the strongest 
negative contributor, along with red blood cell 
count (SHAP = –0.16), correctly driving a negative 
prediction despite positive influences from white 
patches and neutrophil count. Sample 28 (Figure 4D), 
a false-negative case, showed a model output of f(x) 
= –0.683, incorrectly classifying an infected patient. 
Similar to Sample 9, halitosis (SHAP = –0.41), red blood 
cell count, and white patches had strong negative 
influences. Despite a high neutrophil count (SHAP 
= +0.21), it was insufficient to reverse the negative 
classification. This comparison highlights halitosis 
as a consistent negative predictor, but in Sample 
28, the model underestimated positive-driving 
variables, leading to the false-negative outcome.

Figure 4. Model Interpretation Using SHAP. (A) SHAP summary plot showing the mean absolute SHAP 
values of each feature. (B) SHAP beeswarm plot illustrating the individual impact of each feature on the 
model’s prediction. (C) SHAP waterfall plot for Sample 9 (true negative case). (D) SHAP waterfall plot for 

Sample 28 (false negative case).
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3.4. Comparative Performance of XGBoost 
Models in Chemotherapy and Non- Chemotherapy 
Groups

	 In the chemotherapy group, accuracy 
remained consistently high across all models, 
with slight improvements in precision after 
hyperparameter tuning and a notable increase in 
recall following threshold optimization. The F1-score 
rose modestly, and AUC-ROC remained excellent.

In contrast, the non-chemotherapy group 
showed a slightly lower baseline accuracy, which 
increased after threshold optimization. Precision 
also improved marginally but with wider variability. 
Unlike the chemotherapy group, recall decreased 

with threshold adjustment, indicating a trade-off 
with improved precision. The F1-score showed a 
similar trend. However, AUC-ROC improved steadily, 
indicating enhanced discrimination overall.

When comparing the two groups, the 
chemotherapy group consistently achieved higher 
accuracy, recall, and AUC-ROC values than the non-
chemotherapy group, suggesting better model 
performance when treatment-specific variables 
were included. The trade-off between precision 
and recall was more pronounced in the non-
chemotherapy group, highlighting differences 
in variable contributions and prediction stability 
between patient cohorts.

Table 2. Comparative performance of the initial, hyperparameter-optimized, and threshold-optimized 
XGBoost models in chemotherapy and non-chemotherapy groups

Metrics

Chemotherapy group Non-chemotherapy group

Initial model Hyperparameter 
optimized model

Threshold 
optimized 

model
Initial model

Hyperparameter 
optimized 

model

Threshold 
optimized 

model

Accuracy 0.7950 ± 0.1293 0.7987 ± 0.1310 0.7975 ± 0.1344 0.7460 ± 0.1299 0.7768 ± 0.1497 0.7795 ± 0.1429

Precision 0.7190 ± 0.1892 0.7275 ± 0.1861 0.7021 ± 0.1722 0.6654 ± 0.2367 0.6994 ± 0.2799 0.7323 ± 0.3300

Recall 0.8233 ± 0.2079 0.8467 ± 0.2182 0.9333 ± 0.1491 0.6625 ± 0.2541 0.6813 ± 0.2791 0.5813 ± 0.2946

F1-score 0.7500 ± 0.1621 0.7572 ± 0.1620 0.7840 ± 0.1335 0.6361 ± 0.1984 0.6669 ± 0.2462 0.6203 ± 0.2764

AUC-ROC 0.8960 ± 0.0988 0.9093 ± 0.0924 0.9093 ± 0.0924 0.8246 ± 0.1273 0.8758 ± 0.1183 0.8758 ± 0.1183

4. DISCUSSION
Our study of 69 cancer patients found a 36.2% 

prevalence of oral candidiasis, which is lower 
than previous reports [8-10]. We observed similar 
prevalence rates in both non-chemotherapy (35.5%) 
and chemotherapy-treated (36.8%) groups, differing 
from some earlier findings [8]. These discrepancies 
might stem from our sample size, diagnostic methods, 
limited cancer type diversity, and varying case 
definitions. Despite this, our findings underscore the 
increased risk of fungal infection in cancer patients 
compared to those with internal medical patients 
[11]. The significant prevalence in non-chemotherapy 
patients also suggests that malignancy itself, or pre-
existing factors, may contribute to fungal invasion.

In chemotherapy patients, local clinical features 
and hematologic parameters were central predictors 
of oral candidiasis. SHAP analysis identified white 
patches on the mucosa, dry mouth, and taste 
changes/anorexia as most influential, aligning with 
known clinical presentations and the impact of 
chemotherapy on salivary components and nutrition 
[1, 5, 10, 11]. Concurrent bacterial infections were 

also relevant, potentially due to immunosuppression 
or microbiome disruption [12]. Lymphopenia was 
a strong hematologic predictor, consistent with the 
role of CD4+ T cells in antifungal immunity [13]. While 
sPLS-DA indicated higher neutrophil counts in infected 
patients, SHAP analysis assigned lower importance, 
possibly reflecting reactive neutrophilia or functional 
impairment post-chemotherapy [14]. The role of 
basophils warrants further investigation [15].

For non chemotherapy patients, predictive 
variables leaned towards local and behavioral 
factors. Halitosis had the strongest SHAP influence, 
possibly linked to fungal/bacterial overgrowth [16, 
17]. White patches and xerostomia also retained 
predictive value. Low red blood cell count showed 
a notable association, as anemia can compromise 
mucosal integrity or alter iron availability, promoting 
fungal growth [18, 19]. Increased neutrophil count 
was observed in infected patients, potentially 
indicating local inflammation. Behavioral factors like 
antibiotic use (disrupting microbiota) and poor oral 
hygiene were also key, reinforcing the importance of 
preventive care [12].



HUE JOURNAL OF MEDICINE AND PHARMACY  ISSN 3030-4318; eISSN: 3030-4326 147

Hue Journal of Medicine and Pharmacy - No.6; Volume 15-2025

A strength of this study lies in the application of 
integrated machine learning approaches: sPLS-DA 
for variable selection and XGBoost for predictive 
modeling, with SHAP providing model interpretability. 
Both models demonstrated robust performance with 
AUC-ROC values > 0.87 (0.9093 in chemotherapy and 
0.8758 in non-chemotherapy groups), comparable 
to prior studies using XGBoost in medical prediction 
tasks [20 - 23]. The use of SHAP allowed deeper insight 
into the contribution and direction of influence of 
each variable, improving transparency and potential 
clinical utility [24]. Importantly, SHAP confirmed that 
the most influential predictors closely matched those 
identified via sPLS-DA, enhancing model credibility.

Differences in key predictors between the two 
patient groups highlight distinct pathophysiological 
mechanisms: immune suppression and systemic 
alterations in the chemotherapy group versus local 
factors and hygiene-related variables in the non-
chemotherapy group. These findings support the 
rationale for building separate models tailored to 
specific patient populations, as SHAP analysis reveals 
that the predictive importance of variables can shift 
across contexts.

Despite the modest sample size, we implemented 
a carefully designed and rigorous modeling pipeline 
to minimize overfitting-an inherent risk in high-
dimensional, low-sample-size datasets. This included 
proper data preprocessing, nested stratified cross-
validation with multiple repetitions, hyperparameter 
tuning, threshold optimization, and interpretability 
analysis. Our results demonstrate that even complex 
machine learning models can yield robust and 
clinically meaningful outcomes when applied with 
appropriate methodological safeguards. This serves 
as an important methodological contribution and a 
practical example for future studies dealing with small 
datasets.

The cross-sectional design precludes the 
establishment of causal relationships. The relatively 
small sample size (N = 69), particularly after subgroup 
stratification, reduces statistical power and limits 
the generalizability of the findings. This may also 
compromise the robustness of the machine learning 
models due to the high dimensionality of the data. 
The study was conducted at a single center, which 
may not reflect the broader demographic or clinical 
variability seen in other institutions or geographic 
regions. Additionally, some potentially important 
variables were either incompletely collected or 
not assessed, including detailed cancer staging, 
specific chemotherapy regimens, nutritional status 

indicators, salivary pH, and denture use.
While machine learning has rapidly expanded 

across numerous disciplines in recent years, its 
application in clinical research in Vietnam remains 
limited. To the best of our knowledge, this is one of 
the first studies in Vietnam to integrate advanced 
machine learning algorithms, specifically the 
combination of sPLS-DA, XGBoost, and SHAP for 
the analysis and prediction of clinical outcomes. 
Globally, this also represents one of the pioneering 
applications of  advanced machine learning in the 
investigation of oral candidiasis, a condition that 
has received relatively little attention in predictive 
modeling research. At present, there is no strong 
evidence to support universal screening for oral 
candidiasis across all oncology populations, and such 
an approach would not be feasible. Our findings 
suggest that targeted, risk-based strategies may 
be more clinically relevant. Future multicenter, 
prospective studies with larger cohorts, additional 
variables, and advanced diagnostics such as PCR are 
needed to strengthen the validity of machine learning 
models while enabling the creation of external 
validation cohorts to enhance their reliability and 
generalizability. Ultimately, these advances may 
facilitate the development of practical clinical tools 
such as web-based calculators, mobile applications, 
or simplified risk scores that support oncologists 
in stratifying patients by infection risk. Such tools 
would allow clinicians to focus diagnostic testing on 
high-risk individuals, enabling earlier detection and 
timely preventive or therapeutic interventions.

5. CONCLUSION
In this study, the prevalence of oral Candida 

infection was high in both chemotherapy 
(36.8%) and non-chemotherapy (35.4%) cancer 
patient groups. Using sPLS-DA, we identified key 
discriminatory variables, including local clinical signs 
(e.g., dry mouth, white patches), hematological 
indices (e.g., lymphocyte and red blood cell counts), 
and background factors (e.g., antibiotic use, oral 
hygiene). These variables were incorporated into 
separate XGBoost models for each group, both of 
which achieved strong predictive performance (AUC-
ROC > 0.87). SHAP interpretation confirmed the 
importance and directionality of selected features, 
aligning with clinical findings. The integration of sPLS-
DA and XGBoost provided both robust prediction and 
insights into the pathogenesis of oral candidiasis, 
supporting risk-based monitoring and prevention 
strategies in oncology care.
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