Bacteriocins from bacteria and coagulase-negative staphylococci (CoNS): potential applications and challenges

Downloads

Download data is not yet available.
PDF (Tiếng Việt) Download: 7 View: 10

Indexing

CÁC SỐ TỪ 2011-2023
Tạp chí Y Dược Học

Abstract

Bacteriocin are polypetides presenting bioactivity in inhibiting a wide ragne of microorganism. In nature,
various bacteria produce bacteriocins including coagulase-negative staphylococci (CoNS). They belong
to a group of bacteria living on human skin and mucous membranes. Particulary, CoNS produce different
types of antimicrobial substances, such as lactic acid and staphylococcin (a type of bacteriocin), creating an
unfavorable environment, thereby inhibiting the growth of pathogenic microorganisms. The present article
aims to highlight the issues related to bacteriocins produced by bacteria and particularly by CoNS. Recent
achievements demonstrate the potential application of bacteriocins such as staphylococcin to control the
pathogenic bacteria in medical sciences, especially in the control of opportunistic bacterial in human in order
to replace the antibiotic overuse. However, there is still a lot of barriers to overcome to better understanding
the mechanism, the safety evaluation and treatment efficiency before trial application.

https://doi.org/10.34071/jmp.2025.7.1
Published 2025-12-25
Fulltext
PDF (Tiếng Việt) Download: 7 View: 10
Language
Issue Vol. 15 No. 7 (2025)
Section Reviews
DOI 10.34071/jmp.2025.7.1
Keywords Bacteriocin, staphylococcin, kháng khuẩn, Staphylococcus, peptide Bacteriocin, staphylococcin, Staphylococcus, peptide

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Hue Journal of Medicine and Pharmacy

Nguyễn, T. C. A., Le, V. A., Ngô , V. Q. T., Võ , Đại H., Dương , T. N. M., Nguyễn , T. T., Đinh , T. H., Nguyễn , Đức H., & Trần , Đình B. (2025). Bacteriocins from bacteria and coagulase-negative staphylococci (CoNS): potential applications and challenges. Hue Journal of Medicine and Pharmacy, 15(7), 9–15. https://doi.org/10.34071/jmp.2025.7.1

Otto M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol. 2010;5(2):183–195.

O’Sullivan JN, Rea MC, O’Connor PM, Hill, C., & Ross, R. P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol Ecol. 2019;95(2):1–10.

Bastos M, Ceotto H, Coelho M, Hill, C., M. L. V., & Nascimento, J. S. Staphylococcal Antimicrobial Peptides: Relevant Properties and Potential Biotechnological Applications. Curr Pharm Biotechnol. 2009;10(1):38–61.

Bengtsson T, Lönn J, Khalaf H, & Palm, E. The lantibiotic gallidermin acts bactericidal against Staphylococcus epidermidis and Staphylococcus aureus and antagonizes the bacteria-induced proinflammatory responses in dermal fibroblasts. Microbiologyopen. 2018;7(6):1–13.

Carlin Fagundes P, Nascimento de Sousa Santos I, Silva Mrancisco M, Albano, R. M., & de Freire Bastos, M. D. C. Genetic and biochemical characterization of hyicin 3682, the first bacteriocin reported for Staphylococcus hyicus. Microbiol Res. 2017;198:36–46.

Cleveland J, Montville T.J., Nes I.F., Chikindas M.L. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71(1):1–20.

Climo M.W., Patron R.L., Goldstein B.P., Archer G.L. Lysostaphin treatment of experimental methicillin-resistant Staphylococcus aureus aortic valve endocarditis. Antimicrob Agents Chemother. 1998;42(6):1355–60.

Cotter P.D., Ross R.P., Hill C. Bacteriocins — a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11(2):95–105.

De Kwaadsteniet M, Doeschate KT, Dicks LMT. Nisin F in the treatment of Helicobacter pylori infections. J Antimicrob Chemother. 2005;56(3):532–6.

De Vuyst L, Vandamme EJ. Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Springer Science & Business Media; 1994.

Drider D, Fimland G, Héchard Y, McMullen, L. M., & Prévost, H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev. 2006;70(2):564–82.

Duarte AFS, Ceotto-Vigoder H, Barrias ES, Souto- Padrón, T. C. B. S., Nes, I. F., & de Freire Bastos, M. D. C. Hyicin 4244, the first sactibiotic described in staphylococci, exhibits an anti-staphylococcal biofilm activity. Int J Antimicrob Agents. 2018;51(3):349–56.

Ekkelenkamp MB, Hanssen M, Hsu STD, de Jong, A., Milatovic, D., et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett. 2005;579(9):1917–22.

Field D, Cotter PD, Hill C, Ross RP. Bioengineering of bacteriocins for therapeutic applications. Front Microbiol. 2018;9:1567.

Foligne B, Daniel C, Pot B, Dennin, V., Goudercourt, D. et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol. 2007;13(2):236–43.

Fontana MBC, Freire De Bastos MDC, Brandelli A. Bacteriocins Pep5 and epidermin inhibit Staphylococcus epidermidis adhesion to catheters. Curr Microbiol. 2006;52(5):350–3.

Gagliano V, Romano A, D’Angelo F, Francesca Giordano, Teresa Musumeci. Bacteriocins from CoNS as natural preservatives in medical products. Appl Microbiol Biotechnol. 2023;107(2):789–99.

Gálvez A, Abriouel H, López RL, Ben Omar N. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol. 2007;120(1–2):51–70.

Garsa AK, Kumariya R, Sood SK, Anil Kumar, Suman kapila. Optimization of bacteriocin production by Lactobacillus plantarum using response surface methodology. J Food Sci Technol. 2014;51(11):3228–36.

Tortora GJ, Funke BR, Case CL. Microbiology: An Introduction. Pearson Education Inc.; 2013.

Gherardi G. Staphylococcus aureus Infection: Pathogenesis and Antimicrobial Resistance. Int J Mol Sci. 2023;24(9).

Gill HS, Rutherfurd KJ. Immune enhancement by probiotic bacteria. J Dairy Res. 2001;68(1):1–7.

Halliwell S, Warn P, Sattar A, Derrick, J. P., & Upton, M. A single dose of epidermicin NI01 is sufficient to eradicate MRSA from the nares of cotton rats. J Antimicrob Chemother. 2017;72(3):778–81.

Hammami R, Fernandez B, Lacroix C, Fliss I. Assessment of the safety and immunomodulatory effects of bacteriocins from lactic acid bacteria. J Appl Microbiol. 2009;107(4):1231–43.

Metzger, J., Jack, R. W., Bierbaum, G., Sahl, H. G.C, Pag U, Josten M, et al. Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. Appl Environ Microbiol. 1998;64(9):3140–6.

Kim PI, Sohng JK, Sung C, Joo, H. S., Kim, E. M., et al. Characterization and structure identification of an antimicrobial peptide, hominicin, produced by Staphylococcus hominis MBBL 2–9. Biochem Biophys Res Commun. 2010;399(2):133–8.

Lee JH, Kim YJ, Park JS. Synergistic effects of CoNS bacteriocins with other antimicrobial agents. J Med Microbiol. 2023;72(1):001234.

Lesher B, Gao X, Chen Y, & Liu, Z.. Methicillin-resistant Staphylococcus aureus nosocomial pneumonia: role of linezolid in the People’s Republic of China. Clinicoecon Outcomes Res. 2016;8:63–72.

Lynch D, O’Connor PM, Cotter PD, Hill, C., Field, D., & Begley, M. Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS One. 2019;14(10):1–17.

Mathur H, Field D, Rea M.C, Cotter, P. D., Hill, C., & Ross, R. P. Characterization of a novel bacteriocin produced by Staphylococcus epidermidis. J Antimicrob Chemother. 2020;75(3):567–75.

Murosaki S, Yamamoto Y, Ito K, Inokuchi, T., Kusaka, H., Ikeda, H., & Yoshikai, Y. Heat-killed Lactobacillus plantarum L-137 suppresses the production of pro-inflammatory cytokines in mice. Int J Immunopharmacol. 1998;20(10):599–608.

Nascimento JS, Ceotto H, Nascimento SB, Giambiagi‐deMarval, M., Santos, K. R. N., & Bastos, M. C. Bacteriocins as alternative agents for control of multiresistant staphylococcal strains. Lett Appl Microbiol. 2006;42(3):215–21.

O’Sullivan JN, Rea MC, O’Connor PM, Hill, C., & Ross, R. P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol Ecol. 2019;95(2):1–10.

O’Sullivan JN, O’Connor PM, Rea MC, O’Sullivan, O., Walsh, C. J., Healy, B. et al. Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. J Bacteriol. 2020;202(3):1–15.

Otto M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol. 2010;5(2):183–95.

Ovchinnikov KV, Kranjec C, Thorstensen T, Carlsen, H., & Diep, D. B. Successful development of bacteriocins into therapeutic formulation for treatment of MRSA skin infection in a murine model. Antimicrob Agents Chemother. 2020;64(12).

Papagianni M, Anastasiadou S. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb Cell Fact. 2009;8(1):1–18.

Park EJ, Yadav H, Singh TP. Editorial: Microbiota in skin inflammatory diseases. Front Immunol. 2023;14(June):1–3.

Parvez S, Malik KA, Kang SA, Kim HY. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006;100(6):1171–85.

Pérez-Ibarreche M, Guglielmotti DM, Vignolo G, Nicolás Falk, Berenstein Ariel J., et al. Potential use of CoNS bacteriocins to control hospital-acquired infections. Antimicrob Agents Chemother. 2022;66(4):e02021-21.

Pessi T, Sütas Y, Hurme M, Isolauri E. Probiotics and immune response: a review of the literature. Immunol Lett. 2000;71(1):1–6.

Piper C, Draper LA, Cotter PD, Paul Ross R., và Colin Hill. Lantibiotics produced by Lactococcus lactis and their potential use as antimicrobial agents. Appl Environ Microbiol. 2009;75(18):5677–84.

Raheel I, Mohammed AN, Mohamed AA. The efficacy of bacteriocins against biofilm-producing bacteria causing bovine clinical mastitis in dairy farms: A new strategy. Curr Microbiol. 2023;80(7):1–11.

Rea MC, Ross RP, Cotter PD, Colin Hill. Safety assessment of bacteriocins for potential therapeutic applications. Gut Microbes. 2011;2(1):16–21.

Rea MC, Sit CS, Clayton E, Paul M. O’Connor, Robert M. Whittal, Jianjun Zheng, et al. Bacteriocin production by Lactobacillus salivarius as a potential therapeutic strategy for the treatment of Clostridium difficile infection. Gut Microbes. 2011;2(1):16–21.

Saeed K, Bal AM, Gould IM, David, M. Z., Dryden, M., Giannitsioti, E., et al. An update on Staphylococcus aureus infective endocarditis from the International Society of Antimicrobial Chemotherapy (ISAC). Int J Antimicrob Agents. 2019;53:9–15.

Silva CC, Silva SP, Ribeiro SC. Bacteriocin production by Coagulase-Negative Staphylococci from human skin. Front Microbiol. 2021;12:123456.

Silva CCG, Silva SP, Ribeiro SC. Spray drying of bacteriocin-producing lactic acid bacteria for food preservation. Food Res Int. 2018;112:350–6.

Sung C, Kim BG, Kim S, Joo, H. S., & Kim, P. I. Probiotic potential of Staphylococcus hominis MBBL 2–9 as anti-Staphylococcus aureus agent isolated from the vaginal microbiota of a healthy woman. J Appl Microbiol. 2010;108(3):908–16.

Todorov SD, Dicks LMT. Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. J Appl Microbiol. 2005;99(5):1149–55.

Tong SYC, Davis JS, Eichenberger E, Holland, T. L., & Fowler Jr, V. G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61.

Umu ÖCO, Rudi K, Diep DB, Nes IF. The potential of bacteriocins from lactic acid bacteria as antimicrobials in the gut. Benef Microbes. 2016;7(4):467–75.

Van De Kamp M, Van Den Hooven HW, Konings RNH, R. N., Bierbaum, G., Sahl, H. G., Kuipers, O. P., et al. Elucidation of the primary structure of the lantibiotic epilancin K7 from Staphylococcus epidermidis K7: Cloning and characterisation of the epilancin-K7–encoding gene and NMR analysis of mature epilancin K7. Eur J Biochem. 1995;230(2):587–600.

Varella Coelho ML, Santos Nascimento J dos, Fagundes PC, Madureira, D. J., de Oliveira, S. S., de Paiva Brito, M. A. V., & de Freire Bastos, M. D. Activity of staphylococcal bacteriocins against Staphylococcus aureus and Streptococcus agalactiae involved in bovine mastitis. Res Microbiol. 2007;158(7):625–30.

von Eiff C, Becker K, Machka K, Stammer, H., & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001;344(1):11–6.

Wang Y, Zhang X, Li J. Optimization of bacteriocin production by genetic engineering of CoNS. Biotechnol Adv. 2022;54:107825.