Tóm tắt
Background: Raman spectroscopy has emerged as a powerful analytical technique widely applied across various research fields due to its rapid, non-destructive nature. This study was conducted to explore the applicability of Raman spectroscopy in the quantitative analysis of pharmaceutical formulations and to contribute to the optimization of quality control processes during tablet manufacturing.
Materials and Methods: Ibuprofen tablets with varying active ingredient contents were prepared to investigate their Raman spectral profiles. Chemometric approaches were applied to develop quantitative calibration models. The analytical method was validated in accordance with ICH and AOAC guidelines.
Results: Spectral acquisition was performed over the range of 150 cm-1 to 2800 cm-1, yielding distinct characteristic peaks. The optimal measurement conditions included intensity-based signal acquisition with an integration time of 27 seconds. The developed Raman method demonstrated high specificity, linearity, and accuracy within the concentration range of 32.4% to 48.6% w/w of Ibuprofen in tablets. Comparative analysis between the Raman and HPLC methods showed no statistically significant difference in quantification results.
Conclusion: A reliable and validated Raman spectroscopic method was successfully developed for the quantification of Ibuprofen in 200 mg tablet formulations. The results obtained were consistent with those of the HPLC method described in the Vietnamese Pharmacopoeia, Edition V, confirming the potential of Raman spectroscopy as an alternative analytical tool for routine quality control
Đã xuất bản | 30-08-2025 | |
Toàn văn |
|
|
Ngôn ngữ |
|
|
Số tạp chí | Tập 15 Số 4 (2025) | |
Phân mục | Nghiên cứu | |
DOI | 10.34071/jmp.2025.4.3 | |
Từ khóa | Ibuprofen (IBU), Raman, High performance liquid chromatography (HPLC) |

công trình này được cấp phép theo Creative Commons Attribution-phi thương mại-NoDerivatives 4.0 License International . p>
Bản quyền (c) 2025 Tạp chí Y Dược Huế
Đoàn Cao Sơn, Thái Nguyễn Hùng Thu, Trần Việt Hùng, Bùi Văn Trung và Đặng Thị Ngọc Lan. Ứng dụng phương pháp quang phổ Raman và cận hồng ngoại trong kiểm ngiệm thuốc. Nhà xuất bản Giáo dục. 2017.
Vankeirsbilck T, et al. Applications of Raman spectroscopy in pharmaceutical analysis. TrAC Trends Anal Chem. 2002;21(12):869-77. doi:10.1016/S0165-9936(02)01208-6.
Lyndgaard LB, van den Berg F, de Juan A. Quantification of paracetamol through tablet blister packages by Raman spectroscopy and multivariate curve resolution-alternating least squares. Chemom Intell Lab Syst. 2013;125:58-66. doi:10.1016/j.chemolab.2013.03.014.
Eliasson C, Matousek P. Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy. Anal Chem. 2007;79(4):1696-701. doi:10.1021/ac062223z.
Mazurek S, Szostak R. Quantitative determination of diclofenac sodium in solid dosage forms by FT-Raman spectroscopy. J Pharm Biomed Anal. 2008;48(3):814-21. doi:10.1016/j.jpba.2008.08.013.
Mazurek S, Szostak R. Quantitative analysis of thiamine hydrochloride in tablets—Comparison of infrared attenuated total reflection, diffuse reflectance infrared and Raman spectroscopy. Vib Spectrosc. 2012;62:10-6. doi:10.1016/j.vibspec.2012.07.006
Taylor LS, Langkilde FW. Evaluation of solid-state forms present in tablets by Raman spectroscopy. J Pharm Sci. 2000;89(10):1342-53. doi:10.1002/1520-6017(200010)89:10<1342::AID-JPS12>3.0.CO;2-X.
Taylor RD, MacCoss M, Lawson ADG. Rings in drugs. J Med Chem. 2014;57(14):5845-59. doi:10.1021/jm4017625.
Bushra R, Aslam N. An overview of clinical pharmacology of ibuprofen. Oman Med J. 2010;25(3):155-61. doi:10.5001/omj.2010.49.
Bộ Y tế. Dược điển Việt Nam V. Hà Nội: Nhà xuất bản Y học; 2017.
Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design. Adv Drug Deliv Rev. 2015;89:3-20. doi:10.1016/j.addr.2015.04.003.
Vũ Ngọc Phú. Nghiên cứu bào chế viên nén ibuprofen giải phóng nhanh [Luận văn Dược sĩ]. Hà Nội: Trường Đại học Dược Hà Nội; 2006.
European Medicines Agency. ICH guideline Q2(R1): Validation of analytical procedures: text and methodology. 1995.
AOAC International. Appendix F: Guidelines for standard method performance requirements. In: AOAC official methods of analysis. 2016.
Vũ Thu Huyền. Nghiên cứu xây dựng quy trình định lượng azithromycin bằng phương pháp quang phổ hồng ngoại với kỹ thuật đo phản xạ toàn phần suy giảm (ATR) [Luận văn Thạc sĩ Dược học]. Hà Nội: Trường Đại học Dược Hà Nội; 2022.
Zarzo M, Ferrer A. Batch process diagnosis: PLS with variable selection versus block-wise PCR. Chemom Intell Lab Syst. 2004;73(1):15-27. doi:10.1016/j.chemolab.2003.11.009.
Ghasemi J, Niazi A. Simultaneous determination of cobalt and nickel. Comparison of prediction ability of PCR and PLS using original, first and second derivative spectra. Microchem J. 2001;68(1):1-11. doi:10.1016/S0026-265X(00)00159-4.
De Luca M, Ioele G, Spatari C, Ragno G. A single MCR-ALS model for drug analysis in different formulations: Application on diazepam commercial preparations. J Pharm Biomed Anal. 2017;134:346-51. doi:10.1016/j.jpba.2016.10.022.
Özbalci B, Boyaci İH, Topcu A, Kadılar C, Tamer U. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem. 2013;136(3):1444-52. doi:10.1016/j.foodchem.2012.09.064.
Omar J, Boix A, Ulberth F. Raman spectroscopy for quality control and detection of substandard painkillers. Vib Spectrosc. 2020;111:103147. doi:10.1016/j.vibspec.2020.103147.